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Abstract 

This paper describes and evaluates a coordinated check- 
int protocol that uses time to eliminate several perfor- 

mance overheads that are present in traditional protocols. 
The time-based protocol does not have to exchange coor- 
dination messages, does not need to add information to 
the processes' messages, and only accesses stable storage 
when checkpoints are saved. This protocol uses a simple 
initialization procedure to set checkpoint timers at the dif- 
ferent processes. After the initialization, each process saves 
its state independently from the other processes. By dis- 
allowing processes from sending messages during an in- 
terval before the checkpoint time, the protocol prevents in- 
transit messages from occurring. Two coordinated check- 
point protocols were implemented on a CM5, and their per- 
formance was compared using several applications. Re- 
sults showed that the time-based protocol outperforms the 
two-phase protocol in all applications. 

1    Introduction 
One effective way to recover distributed systems from 

failures is to use checkpointing and rollback recovery. Typ- 
ically, a checkpoint protocol periodically saves the state of 
the application in stable storage. After a failure, the appli- 
cation rolls back to the last state that was saved and starts 
its re-execution. Checkpoint protocols are usually divided 
into two groups, uncoordinated [1,9,12,18,22] and coor- 
dinated [2,5, 10, 11]. In uncoordinated checkpoint proto- 
cols, each process determines independently from the oth- 
ers the instant when its state should be saved. To avoid the 
domino effect, the checkpoint protocol also saves informa- 
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tion about the messages that were exchanged among pro- 
cesses. 

In coordinated checkpoint protocols, processes coordi- 
nate among themselves to determine which process states 
should be included in the application checkpoint. The co- 
ordination is necessary to guarantee that the application 
checkpoint is consistent and recoverable (section 3.2 ex- 
plains these concepts). These protocols usually select one 
of the processes, the coordinator, to initiate the creation of 
the checkpoints and to ensure that each process saves its 
state [6,14,17,19]. This task is accomplished with the ex- 
change of a set of messages. The protocol adds information 
to each message to detect in-transit messages. Whenever 
an in-transit message arrives, the protocol saves it in stable 
storage, together with the state of the processes. 

Both types of protocols have their own advantages. 
However, coordinated protocols have shown better perfor- 
mance than uncoordinated protocols when used with par- 
allel applications [7]. Additionally, coordinated protocols 
do not need any piece-wise determinism assumption about 
the execution of the processes [8] and can tolerate failures 
that affect multiple processes simultaneously. Neverthe- 
less, previous coordinated protocols have several overheads 
that should be avoided. In a typical coordinated protocol, 
the coordinator has to exchange three messages with each 
process. This overhead can become significant if the num- 
ber of processes increases and the network is slow. The ad- 
dition of information to messages to detect in-transit mes- 
sages can also be an important overhead, depending on the 
level at which the protocol is implemented. If the protocol 
is implemented in a library, the overhead can be consider- 
able, because each message might have to be copied. The 
third overhead is related to the in-transit messages. A pro- 
cess has to make an access to stable storage to save each 
in-transit message that it receives. 

Previous time-based protocols [5,15,21] have used time 
to avoid the first overhead, the exchange of coordination 
messages. These protocols assume that processors' clocks 
are approximately synchronized, and use time to indirectly 
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coordinate the checkpoint creation. Each process saves 
its state whenever the local clock reaches checkpoint time. 
This paper presents a time-based protocol that also uses 
time to coordinate the checkpoint creation. However, this 
protocol does not rely on synchronized clocks. It uses a 
simple initiation procedure to set checkpoint timers at the 
different processes, and it saves new checkpoints whenever 
the timers expire. Contrary to the other time-based proto- 
cols, it also avoids the two other overheads that were men- 
tioned previously. This is accomplished by preventing pro- 
cesses from sending messages that might become in-transit. 
The protocol defines a time interval before the checkpoint 
creation time during which processes are not allowed to 
send messages. The extent of the interval is proportional 
to the maximum message delivery time. 

The proposed time-based protocol and a two-phase pro- 
tocol were implemented on a CM5, and their performance 
was compared using several applications. Our results show 
that the time-based protocol outperforms the two-phase 
protocol in all applications. They also indicate that the most 
important overheads are the storing of the in-transit mes- 
sages and the addition of information to messages. The less 
important overhead is the exchange of messages during the 
checkpoint creation. 

2   Related Work 

There is a broad literature in the subject of checkpointing 
and rollback recovery in distributed systems. Three differ- 
ent time-based checkpoint protocols have been previously 
proposed [5, 15,21]. All these time-based protocols rely 
on approximately synchronized clocks to avoid exchanging 
coordination messages during the checkpoint creation. The 
protocol proposed by Tong et al. [21] creates checkpoints 
periodically, whenever the local clock arrives at the check- 
point time. The protocol assumes that a positive acknowl- 
edgment retransmission scheme is used to detect lost mes- 
sages. A sender process keeps a copy of each message that 
it sends until it receives a positive acknowledgment. The 
checkpoint of a process includes all messages that have not 
been acknowledged. In-transit messages are detected by 
adding a checkpoint number to every message and its ac- 
knowledgment. A process saves in-transit messages as it 
receives them. Cristian and Jahanian [5] also use time to 
avoid message coordination. This protocol requires stricter 
assumptions about the synchronization of the clocks and as- 
sumes that messages' delivery times are bounded with high 
probability. However, it only needs to do one access to sta- 
ble storage to save the in-transit messages. The protocol 
adds to each message the current checkpoint number and 
the time of the local clock. The checkpoint number is used 
to identify in-transit messages, and the local time is used 
to detect violations to the expected bounded delivery time. 

Ramanathan and Shin [15] proposed a time-based protocol 
in the context of the recovery blocks. This protocol relies 
on lock-step synchronized clocks and on the correct estima- 
tion of the expected time for a process to reach its accep- 
tance tests. In this protocol, time was used to reduce the 
probability of blocking and to reduce the number of check- 
points that have to be kept. 

The protocol presented in this paper does not necessitate 
synchronized clocks. It uses a simple initialization proce- 
dure to set the checkpoint timers. Contrary to the previous 
time-based protocols, it also prevents the existence of in- 
transit messages and does not need to add information to 
messages. Section 6 shows that these two overheads are 
more important than the actual exchange of coordination 
messages. The paper also presents the first implementation 
and experimental evaluation of time-based checkpointing. 

Performance results of coordinated checkpointing have 
been presented by some authors in the past [3,6,7, 14]. 
These papers mainly show experimental results for the total 
execution of the checkpoint protocol. Our paper divides the 
checkpoint overhead into several categories, and presents 
experimental results for these specific categories. The fol- 
lowing overheads are considered: message coordination, 
addition of information to messages, and in-transit message 
storing. 

3    Distributed System Model 

3.1    System Environment 

The system is composed of a set of nodes interconnected 
by a network. A node contains a processing unit, a local 
memory and a local hardware clock. Clocks do not need to 
be synchronized among nodes. However, it is assumed that 
local clocks drift from real time with a maximum drift rate, 
p. This assumption implies that local clocks have at most an 
error of p(e - s) seconds at the end of the real-time interval 
[s,e] seconds. The bounded drift rate condition applied to 
the local clock of a node n is 

(1 - p)(e -s)< C„(e) - Cn(s) < (1 + p){e - s) 

where Cn(t) is time returned by the local clock when the 
real-time is t. The bounded drift equation can be used to 
derive a maximum deviation between the expiration of two 
timers. If two timers are started in two nodes exactly at 
the same time with the same initial value T, then they will 
expire by at most 2pT/(l - p2) seconds from each other 
(we will approximate this value by 2pT). Drift rates are in 
the order of 10-5 or 10~6 for most quartz clocks that are 
available in commodity computers, and for high precision 
clocks p is in the order of 10-7 or 10-8 [4]. 



Every node can store data in stable storage, and this data 
can be obtained after a failure by the correct nodes. Nodes 
fail according to the fail-stop model. In this model, a node 
affected by a fault stops its execution and remains stopped 
until recovery is initiated. All correct nodes can determine 
which nodes have failed. 

Each node provides a computational environment for 
one or more processes. Each process executes a program 
and exchanges messages with the other processes. Mes- 
sages are delivered in any order (no FIFO requirement) and 
communication channels can be unreliable, i.e., channels 
can lose or duplicate messages. However, if channels are 
unreliable, a simple mechanism based on sequence num- 
bers and timeouts can be used to guarantee that a process 
receives all messages sent to it without duplicates. Mes- 
sages are delivered to processes with a bounded delivery 
time, td.ma.x- The total time to send a message, transmit the 
message through the network, and then receive the message 
is smaller than tdmax- 

3.2    Recoverable Consistent Checkpoints 

A distributed application is executed by a set of pro- 
cesses that run on several nodes. The main responsibil- 
ity of a coordinated checkpoint protocol is to save global 
states of the application. A global state includes the state 
of each process belonging to the application and possibly 
some messages. A process state contains the send event 
send(rrii) if it has sent message mt. A process state con- 
tains the receive event rcv(mi) if it has received message 
rrii. A generic coordinated protocol should record recov- 
erable consistent global states, which satisfy the following 
two properties: 

Consistency : If the global state includes a process state 
containing the receive event rcu(rrii) then another 
process state must contain the corresponding send 
event send(rrii). 

Recoverability : If the global state includes a process state 
containing the send event send{mi) but no other pro- 
cess state contains the corresponding receive event 
rcv(rrii) then the checkpoint protocol must save mes- 
sage TTli. 

Global states saved by the checkpoint protocol are used 
to recover the application from failures that have affected 
one or more of its processes. Typically, the application rolls 
back to the last stored state and then starts to re-execute. 
The external results of the application re-execution should 
be equivalent to one of the results of a failure-free exe- 
cution. This can only be accomplished if the application 
restarts from a global state that could have occurred dur- 
ing one execution with no failures [2]. For this reason, the 

global state can only contain receive events whose corre- 
sponding send events are also included. This characteris- 
tic is guaranteed by the consistency property. On the other 
hand, global states must include all messages that were in- 
transit at checkpoint time. Otherwise, these messages be- 
come lost during recovery because they are not re-sent by 
the processes. The recoverability property guarantees that 
all in-transit messages are available after the failure. 

4   Time-Based Checkpoint Protocol 

The time-based checkpoint protocol uses an initializa- 
tion procedure to synchronize checkpoint timers and a 
checkpoint creation procedure to record recoverable con- 
sistent states of the application. The checkpoint creation 
procedure is executed periodically by each process when- 
ever the local checkpoint timer expires. All processing is 
done locally without any exchanges of coordination mes- 
sages. To guarantee that the consistency property is veri- 
fied, the protocol disallows message sends during an inter- 
val after the expiration of the checkpoint timer. This inter- 
val is not constant, and increases as clocks drift apart. In 
an actual implementation, the blocking of message sends 
should not bring performance losses, because each process 
uses the interval to save its state. Timers are resynchronized 
when the interval becomes higher than the time taken to 
store a checkpoint. The recoverability property is ensured 
by preventing in-transit messages from occurring. The pro- 
tocol disallows message sends during an interval before the 
checkpoint time. This interval is proportional to the maxi- 
mum message delivery time. 

The time-based protocol is described in the following 
way. First, we present the initialization procedure. Then, 
we derive two conditions, one that guarantees the consis- 
tency property and another that ensures the recoverability 
property. 

4.1    Initialization Procedure 

The initialization procedure initiates the processes' 
checkpoint timers in such a way that timers will expire 
within an interval of D seconds (if p = 0). Ideally, D 
should be made as small as possible, because that reduces 
the periods in which processes are not allowed to send mes- 
sages (see next section). The initialization procedure is 
executed in three situations: to initialize the checkpoint 
protocol when the application starts, to initialize new pro- 
cesses that are added during the application execution, and 
to resynchronize the checkpoint timers. The resynchro- 
nization frequency depends on the value of the drift rate, but 
is relatively small. 

The initialization procedure selects one of the processes 
to be the coordinator (the coordinator is usually the pro- 
cess that starts the application). The responsibility of the 
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Initialization: 
Coordinator: 

ckpTime = getTime() + T; 
setlimer(createNewCkp, ckpTime); 
setTimer(s£opS Mesg, ckpT'ime — (D + IT p + tdmax))\ 
while (TRUE) { 

time = getTime(); 
broadcast(cfcpTrme — thne); 
for each(p; € Processes) do receive(p*); 
if ((getTime() - time) < (2 * tdjnln + D)) { 

broadcast(FALSE); 
break; 

} else broadcast(TRUE); 

} 
Process i: 

continue =   TRUE; 
while (continue) { 

receive(coord, interval); 
time = getTimeO; 
send(coord); 
receive(coord, continue); 

} 
ckpTime = time + interval — tdmin', 
setTimei(createNewCkp, ckpTime); 
setTimer(stopSMesg, ckpTime - {D + ITp + tjmai)); 

Figure 1: Initialization procedure. 

coordinator is to initiate the timers of the other processes. 
The coordinator cannot send an absolute time to the other 
processes, because clocks are not synchronized. It has to 
send a time interval. To calculate the interval inter c, the 
coordinator subtracts its local time from the time when its 
timer expires. The timer at process p, is set to timer■; = 
currentTimei + interc - tdmin (where tdmin is the min- 
imum time to deliver a message). 

There are several ways to distribute the time interval 
among the processes, and their complexity depends on the 
system that is being considered. Figure 1 shows one im- 
plementation of the initialization procedure. First, the co- 
ordinator adds to its local time the checkpoint period T1 

to obtain the first checkpoint time, ckpTime. Then, it sets 
two timers which will call the functions createNewCkp 
and stopSMesg (the next section explains the time values 
that were used), and broadcasts the interval. The other pro- 
cesses execute the code Process i. This code receives 
the interval and initiates two similar timers. Since differ- 
ent messages can experience distinct network delays, the 
coordinator loops sending the interval until it receives all 
answers within a time period smaller than D + 2 * tdmin- 

lFot simplicity, checkpoints are created periodically with a constant 
period T. In a more general case. T can be different for each checkpoint 
as long as processes agree on the same value. 

Figure 2: Consistency problem. 

This guarantees that checkpoint timers will expire at most 
D seconds apart (if p = 0). In the experiments, D was set 
to 10 ms, which in most cases allowed the initialization of 
the timers in a single iteration. 

4.2    Checkpoint Creation Procedure 

4.2.1    Consistency 

The checkpoint creation procedure has to save application 
states that verify the consistency property. Figure 2 shows 
an example of an execution that violates the consistency 
property. Process Pi saves its state whenever its checkpoint 
timer expires at Ti. Since timers are not exactly synchro- 
nized, process PI sends a message ml after saving its state, 
and PI receives ml before storing its state. The consis- 
tency property is violated because the global state contains 
recv(ml) but does not include senri(ml). To avoid this 
problem, the time-based protocol disallows message sends 
during an interval after the checkpoint timer has expired. 

Consistency condition : The nth application checkpoint 
satisfies the consistency property if no process is al- 
lowed to send messages MD - tdmin seconds after 
saving its nth checkpoint. 

The consistency condition (CC) defines an interval in 
which processes can not send messages. This interval is 
equal to the maximum deviation, MD, between timers 
minus the minimum time required to deliver a message. 
Timers in different processes do not expire at the same time, 
because they are not exactly synchronized. The maximum 
deviation is the maximum time interval that can separate 
the expiration of any two timers, and is equal to MD = 
D + 2nTp. It depends on two quantities, the initial devia- 
tion between timers, D, and the clock drift since the last ini- 
tialization, 2nTp (see bounded drift condition in section 3). 
The first quantity is constant, but the second one increases 
with time. This means that the amount of blocking can 
grow with time. However, MD increases slowly because 
drift rates are small. For instance, the initialization proce- 
dure can be used to start timers with D = 10 ms. If we 
assume a clock drift of p = 10~6, then MD is equal to 100 
ms after 12.5 hours. 
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Figure 3: Total blocking interval. 

The performance losses introduced by the CC condition 
are usually small in real systems. The CC condition does 
not prevent processes from continuing their execution. The 
CC condition only blocks a process if it attempts to send 
messages (actually, the process only has to block if it sends 
a synchronous message, because asynchronous messages 
can be queued). Also, the blocking interval can be used to 
save the processes' state. In current systems, disk accesses 
consume a large amount of time, which means that most or 
all MD time is used to store the process checkpoint (a typ- 
ical process checkpoint takes at least 500 ms). 

4.2.2    Recoverability 

The easiest way to guarantee the recoverability property 
consists of avoiding the creation of messages that might be- 
come in-transit. This approach simplifies the implementa- 
tion of the protocol during both the failure-free periods and 
recovery. The checkpoint protocol does not need to log any 
messages or to re-send or re-read messages. However, in 
this solution, processes can not send messages during an in- 
terval before their timers expire. 

Recoverability condition : The nth application check- 
point satisfies the recoverability property if no process 
is allowed to send messages MD + tdmax seconds be- 
fore its timer expires. 

The example from Figure 3 can be used to illustrate the 
recoverability condition (RC). A message can become in- 
transit if it is sent before a process creates its checkpoint 
and is received after the other process has saved its state. 
In the figure, process PI sends two messages, ml and ml. 
Message ml does not have to be stored, but message m2 
would have to be saved if process P2 was allowed to send it. 
The maximum interval that prevents the existence of mes- 
sages like ml is equal to MD + tdmax- The reader should 
note that RC does not prohibit processes from continuing 
their executions until they start to save their checkpoints. 
The process needs to block only if it attempts to send a 
synchronous message. If the message can be sent asyn- 
chronously, the process simply queues the message and 
continues with the computation. The message is sent after 
CC is verified. 

stopSMesg: 
stopSendMesg = TRUE; 
setlimer(stopSMesg, ckpTime + T— 

{D + 2{CN + l)Tp + tdmax)); 
createNewCkp: 

saveProcessState(); 
CN = CN + 1; 
ckptTime = ckpTime + T; 
set1imex(createNewCkp, ckpTime); 
if ((getTimeQ - (ckpTime -T)) < = 

(Ö + 2(CJV -l)Tp-tdmin)) 
resynchronizeTimersO; 

stopSendMesg = FALSE; 
sendQueuedMessages(); 

Figure 4: Checkpoint creation procedure. 

4.2.3    Creation of a Checkpoint 

The time-based checkpoint protocol uses the CC and the 
RC conditions to create recoverable consistent checkpoints. 
The protocol can be implemented using the initialization 
procedure from Figure 1 and the checkpoint creation pro- 
cedure from Figure 4. The creation procedure uses two 
timers: one that expires MD + tdmax seconds before 
checkpoint time, and another that expires at checkpoint 
time. Whenever the first timer terminates, it calls the func- 
tion stopSMesg. This function sets a flag indicating that 
messages should be queued, and resets the timer. The func- 
tion createNewCkp saves the process state, increments the 
checkpoint time by the checkpoint period T, and re-sets the 
timer. The variable CN counts the number of checkpoints 
that have been created since the last resynchronization. 
Then, createNewCkp tests the CC condition. If the con- 
dition is not verified, the function resynchronizeTimers 
is called to resynchronize the timers. This function sends a 
request for synchronization to the coordinator. The resyn- 
chronization procedure is similar to the initialization. Be- 
fore returning, createNewCkp resets the flag and sends the 
messages that were queued. 

5   Implementation 

The experiments were performed on the CM5 of the Na- 
tional Center for Supercomputing Applications (NCSA). In 
this machine, each node contains a Sparc Cypress proces- 
sor, 32 Mbytes of memory, and a network interface [20]. 
Nodes are connected by a control network and a data net- 
work. The control network supports communication pat- 
terns that involve all processing nodes (e.g., synchroniza- 
tion). The data network is used for point-to-point commu- 
nications among nodes. The data network guarantees to 
each node an I/O bandwidth of at least 5Mbytes/sec (usual 



bandwidths are between 8 and 10Mbytes/sec). 
The time-based protocol and two versions of a two- 

phase protocol were implemented in a library that was 
linked with the applications. The library logically stays be- 
tween the application and the CM5 communication library, 
CMMD. Whenever an application attempts to send a mes- 
sage, it first passes the message to the library. The library 
then executes all the steps required by the checkpoint pro- 
tocol, and calls CMMD to send the message. The inverse 
procedure occurs on the receive side. This level of indirec- 
tion allows a transparent implementation of the checkpoint 
protocols. 

5.1    Two-Phase Protocol 

The two-phase protocol utilized in the experiments is 
similar to the protocol that was used in a previous study on 
coordinated checkpoint protocols [6]. With the exception 
of the bounded delivery times, the time-based and the two- 
phase protocols make similar assumptions about the com- 
munication channels. 

The two-phase protocol keeps in each process a check- 
point number counter, CN, that is incremented whenever 
a process saves its state. A new application checkpoint 
is processed in the following way. The coordinator incre- 
ments its CN counter and broadcasts a special start mes- 
sage < START,CN >. After receiving the start mes- 
sage, a process updates the local CN and saves its state. 
Then, it sends a message < SAVED, CN > to the coor- 
dinator. The coordinator, after saving its state and receiving 
all the < SAVED, CN > messages, broadcasts the mes- 
sage < END, CN > to terminate the checkpoint creation. 
To detect in-transit messages, the protocol tags each appli- 
cation message with the value of the local CN. A process 
stores in stable storage all messages that are received with a 
CNm smaller than the current CN. A process initiates the 
creation of a new checkpoint if a message has a CNm larger 
than the current CN. This last scenario can occur because 
channels are non-FIFO. 

Two versions of two-phase checkpoint protocol were 
implemented. The first version follows exactly the proce- 
dure just described. In that version, the checkpoint library 
has to make an extra copy of each message passed by the 
application in order to add or remove the CN tag. The 
CMMD library does not provide a gather send function for 
noncontiguous buffers with different sizes. If this function 
were available, the copy could be avoided by saving in one 
buffer the CN tag and in another the message supplied by 
the application. In general, the extra copy has to be made 
in any system in which gather send functions are not avail- 
able. 

The second implementation avoids the copy in most 
cases, at the cost of making the protocol less general and 
less transparent. This implementation uses two bits of the 

application message tags to piggyback the CN. In this 
case, CN can only take four different values, 0 through 3. 
This optimization could only be used in a communication 
function that has a tag. In the other cases, it was necessary 
to make a copy. This restriction to the CN values requires 
the assumption that message delivery times are bounded 
and less than three times the checkpoint period. Also, the 
programmer can only use the first thirty bits of the message 
tag. 

5.2    Time-Based Implementation 

The time-based protocol makes the assumption that de- 
livery times are bounded. This assumption can not be guar- 
anteed in a system like the CM5, although it can be approx- 
imated. Our implementation uses two characteristics of 
the CM5 to approximate bounded delivery times. The first 
characteristic is the minimum I/O bandwidth guaranteed to 
each node. The second characteristic is the small number 
of processes that execute concurrently in each node. The 
following formula was used to calculate the maximum de- 
livery time: 

t<tr, 
_  maxMtsaSizt  + extraTime 

oivl 

The first term in the formula corresponds to the maxi- 
mum time that a message takes to be transmitted through 
the network. It depends on the size of the largest message 
that is sent by the application, maxMesgSize, and on the 
minimum bandwidth that is guaranteed by the network be- 
tween two nodes. The second term is an upper bound on all 
the other delays that a message can experience. On some 
machines, it is difficult to determine this bound, because of 
the scheduling delays (e.g., a message can be received by 
the operating system, but the process is only scheduled af- 
ter a long period of time). However, in the CM5 this prob- 
lem is less important, because only a small number of pro- 
cesses are executed concurrently in each processor (usually 
only one or two processes). In the experiments, the value of 
tdmax was set to 65 ms (25 ms to send the largest message 
and 40 ms for the extra time). 

5.3    Applications 

We used in the experiments six compute-intensive appli- 
cations. These applications are either kernels of larger pro- 
grams, or complete programs. Each application has differ- 
ent characteristics in terms of frequency of communication, 
amount of information exchanged, or pattern of communi- 
cation. Table 1 presents the inputs that were used for each 
application. The applications were the following: 

• lu: Performs the LU factorization of a matrix us- 
ing the Gaussian elimination with partial pivoting. In 
each step, a node computes a column's multipliers and 



Table 1: Description of the applications used in the experiments. 

Problem 
Description Mesg./sec 

Messages 
KBytes/sec Max. size 

lu 50 512x512 matrices. 1763.1 3871.5 36864 

mult 40 512x512 matrices. 6.0 200.8 34816 

sor 3000 iterations 1024x1024 points. 748.6 3080.5 135432 

tsp 10 problems with 20 cities. 143.2 586.6 4096 

ga population 1600, 4xl0ö funct. evaluations 19.3 79.6 4096 

ising 1200 iterations 1024x1024 grid. 329.2 1348.6 4096 

broadcasts them to the other nodes. Next, all nodes up- 
date the remaining columns. 

• mult: Multiplies several matrices by the same initial 
matrix A (A * B{ = d, i = 1, 2,...). Each node starts 
with the same copy of a matrix, and calculates a few 
contiguous rows of the result matrix. 

• sor: Uses the red-black successive overrelaxation it- 
erative method to solve the Laplace equation. The 
problem is parallelized by giving to each node a cer- 
tain number of contiguous rows of the resulting linear 
system of equations. In each iteration, a node calcu- 
lates its points, and then exchanges the two boundary 
rows with two other nodes. 

• tsp: Solves the traveling salesperson problem. A 
master node keeps a queue with a number of tours that 
still have to be evaluated. The other nodes request 
tours from the master and try to find a minimum length 
tour. 

• ga: Is a parallel implementation of the genetic algo- 
rithm system GENESIS 5.0 [13]. ga solves a non- 
linear optimization problem. This application divides 
the initial population among the nodes. A node exe- 
cutes the genetic algorithm on its individuals, and af- 
ter a few generations, it exchanges a few individuals 
with another two nodes. 

• ising: Is a parallel simulation model of physical sys- 
tems, such as alloys and polymers [16]. ising simu- 
lates in two dimensions the spin changes of Spin-glass 
particles at different temperatures. 

6    Experimental Results 

This section describes experiments made on a 32-node 
partition of a CM5. The results were obtained using the 
average of 3 to 5 experiments. In all runs, the execution 

times were on the order of 10 minutes, and the checkpoint 
interval was set to 1 minute. We did not use larger ex- 
ecution times because we had a limited amount of CM5 
time that had to be used for both the code development and 
experiments. This, however, does not change our conclu- 
sions, because they are mainly comparisons between the 
two types of protocols. With larger checkpoint intervals 
we expect better performance for the time-based protocol 
and the two-phase protocol with the copy optimization, be- 
cause they have small overheads between the creation of 
the checkpoints. The other version of the two-phase pro- 
tocol will perform better or worse depending on the appli- 
cation. Since this paper does not propose new ways to re- 
duce the checkpoint storing overhead, we do not include 
this overhead in the experimental results. We assume that 
both checkpoint protocols take the same time to store the 
application state. 

6.1    Time-Based vs. Two-Phase 

This section compares the time-based protocol with the 
version of the two-phase protocol without the message copy 
optimization. Table 2 presents the various results for ex- 
ecutions with and without the checkpoint protocols. It is 
possible to observe that the time-based protocol performs 
better than the two-phase protocol in all applications. The 
time-based protocol shows overheads smaller than 1 %, and 
the two-phase protocol has overheads between 1.5% and 
13.1%. It is also possible to observe in the table that in 
most applications the two protocols took different numbers 
of checkpoints (due to the periodicity of the checkpoint 
creation). However, even if we calculate the overhead per 
checkpoint2, the time-based protocol outperforms the two- 
phase protocol. 

The time-based protocol achieves good results because 
it avoids most overheads while the application is executing. 

2The reader should notice that this measure has to be used with cau- 
tion, since the overhead of the checkpoint protocol does not occur only 
during the checkpoint creation, but also while the application is execut- 
ing. In fact, a reasonable pan of the overhead of the two-phase protocol 
occurs between the creation of the checkpoints. 



Table 2: Experimental results on a 32-node partition of the CM5. 

No Ckp. 
sec NCkp. 

Time-Based 
sec       %     Per Ckp. % NCkp. 

Two-Phase 
sec         % Per Ckp. % 

lu 451.5 7 455.5 0.9 0.13 8 510.6 13.1 1.64 

mult 418.1 7 420.3 0.5 0.07 7 440.7 5.4 0.77 

sor 497.5 8 499.6 0.4 0.05 9 547.7 10.1 1.12 

tsp 449.3 7 450.3 0.2 0.03 7 462.9 3.0 0.43 

ga 418.0 6 419.1 0.3 0.04 7 424.4 1.5 0.22 

ising 467.0 7 471.8 1.0 0.15 8 492.4 5.4 0.68 

The major cost of the protocol occurs only when the appli- 
cation is about to take its checkpoint. At checkpoint time, 
there is one interval in which processes can not send any 
messages. However, there is no blocking if the checkpoint 
happens to be taken in a computing phase of the process ex- 
ecution. Our experiments show that in most cases only a 
small number of processes had to block, usually less than 
10%. Also, the amount of blocking depends on the instant 
when the process attempts to communicate. If the message 
is sent at the end of the interval, the process experiences al- 
most no blocking. 

The size of the blocking interval is proportional to clock 
drift and the maximum message delivery time. Since clock 
drifts are small, their contribution to the interval is usually 
modest. However, the term corresponding to the clock drift 
grows with time. As was mentioned previously, timers can 
be re-synchronized to solve this problem. It is more diffi- 
cult to guarantee that the maximum delivery time will al- 
ways be small (or that it even exists). For instance, it de- 
pends on the size of the largest message sent by the appli- 
cation and on the network bandwidth. The size of the mes- 
sages can be kept within reasonable bounds if the check- 
point library implements message fragmentation. The ap- 
plications that were used did not send messages larger than 
135432 bytes, so there was no need to implement fragmen- 
tation. 

6.2    Distribution of the Overheads 

The performance costs introduced by the two-phase pro- 
tocol can be divided mainly into message coordination, 
addition of information to messages, and in-transit mes- 
sage storage. Figure 5 presents, for each application, four 
bars showing how the costs have been sub-divided. The 
first bar shows the total overhead of the time-based pro- 
tocol. The bar "No Copy, No In-transit" corresponds to 
the executions of the two-phase implementation with the 
no-message-copy optimization. This bar does not contain 
the time spent to save the in-transit messages (the function 
where the write occurs was commented), which means that 
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Figure 5: Time overheads of the checkpoint protocols. 

it mainly shows the performance costs associated with the 
message coordination. It can be observed that the time- 
based protocol outperforms the optimized two-phase pro- 
tocol in all applications. However, the overhead of mes- 
sage coordination is relatively small. The CM5 has a fast 
network, and we have implemented a completely asyn- 
chronous message coordination. No process is required to 
block while waiting for the coordination messages from the 
other processes. This type of implementation removes most 
of the message coordination costs, lu is the only applica- 
tion that shows a high overhead. In this application, it was 
not possible to remove all message copies, lu distributes 
the matrix multipliers through the nodes using the broad- 
cast primitive of the CMMD. The broadcast function is syn- 
chronous and does not associate a tag with the messages. In 
this case, it was necessary to make a message copy to add 
the CN number. The lu bar contains copying overheads in 
addition to the message coordination. 

The bar "Copy, No In-transit" corresponds to execu- 
tions of the two-phase implementation that makes a mes- 
sage copy. This bar does not include the time taken to save 
the in-transit messages. It mainly shows the elapsed time 



Table 3: In-transit messages. 

Number Kbytes 

lu 27 393.0 
mult 11 405.5 
sor 40 324.9 
tsp 9 73.7 
ga 18 150.2 
ising 45 369.6 

taken to make the message copies and to coordinate the 
checkpoint creation. The difference between the third and 
the second bar should be roughly equal to the time wasted 
while copying the messages. This time depends heavily on 
the application. Applications that exchange many and large 
messages have a higher copying overhead (see Table 1). 
The time also depends on the communication pattern that 
is used by the application, tsp sends a larger amount of in- 
formation per second than mult, but it has a smaller copy 
overhead. In the mult application, nodes send to the master 
the computed rows, and then wait for new rows of another 
matrix. The master only distributes new work after receiv- 
ing all the previous rows. This means that each message 
copy made by the master not only makes the receiving pro- 
cess wait, but also all the other processes that are expecting 
new rows. Communication is less synchronous on tsp. A 
node sends its results to the master, and then receives new 
work without having to wait for the other nodes. 

The last bar adds to the third bar the time required to save 
the in-transit messages. These values are the average of the 
3 best execution times of 5 experiments. The number of in- 
transit messages that have to be stored can change dramat- 
ically from one run to the next. For instance, with the ga 
application, there was an execution for which it was neces- 
sary to save 207 messages with a total size of 1.7 Mbytes. 
These values are quite different from the averages shown 
in Table 3. The in-transit storage overhead depends on sev- 
eral factors, such as the number of in-transit messages, the 
size of the messages, and disk contention while the writes 
are being done. It also depends on the type of communi- 
cation that is used by the applications. As was mentioned 
previously, if several nodes are expecting to receive a mes- 
sage from the same node at the same time, a disk access 
made by the sender can make several nodes wait. The use 
of different communication primitives can change the prob- 
ability that in-transit messages will occur. For instance, lu 
sends more messages than sor, but has a smaller number 
of in-transit messages (see Tables 1 and 3). This is because 
lu uses a synchronous broadcast primitive. 

7    Conclusions 

The paper presented a checkpoint protocol that uses time 
to avoid most performance penalties introduced by tradi- 
tional coordinated protocols. The protocol does not rely on 
approximately synchronized clocks to eliminate the mes- 
sage coordination overhead. It uses a simple initialization 
procedure to start the checkpoint timers. Contrary to previ- 
ous time-based protocols, it also eliminates the overheads 
of in-transit message storage and addition of information 
to messages. This is accomplished by preventing processes 
from sending messages during an interval before the check- 
point time. 

Experimental results were presented showing that the 
time-based protocol outperforms a two-phase protocol. Re- 
sults also show that message coordination overhead is less 
important than the overhead of writing in-transit messages 
to stable storage and the overhead of adding information to 
messages. 
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